Der erste Schritt bei der Entwicklung eines Box-Jenkins-Modells besteht darin, festzustellen, ob die Serie stationär ist und ob es eine signifikante Saisonalität gibt, die modelliert werden muss. Stationarität kann anhand eines Ablaufablaufplots beurteilt werden. Das Ablaufdiagramm sollte eine konstante Position und Skalierung aufweisen. Es kann auch aus einem Autokorrelationsdiagramm nachgewiesen werden. Insbesondere wird die Nichtstationarität oft durch eine Autokorrelationsdiagramm mit sehr langsamem Abfall angezeigt. Differenzierung zur Stationarität Box und Jenkins empfehlen den differenzierenden Ansatz, um Stationarität zu erreichen. Jedoch kann auch das Anpassen einer Kurve und das Subtrahieren der angepassten Werte aus den ursprünglichen Daten auch im Zusammenhang mit Box-Jenkins-Modellen verwendet werden. Bei der Modellidentifizierungsphase ist es unser Ziel, jahreszeitliche Erkennung, falls vorhanden, zu erkennen und den Auftrag für die saisonalen autoregressiven und saisonalen gleitenden Durchschnittsbedingungen zu ermitteln. Für viele Serien ist die Periode bekannt und ein einzelner Saisonalitätsausdruck ist ausreichend. Zum Beispiel für monatliche Daten würden wir typischerweise entweder eine saisonale AR 12 Begriff oder eine saisonale MA 12 Begriff. Bei Box-Jenkins-Modellen wird das Modell vor der Montage nicht explizit entfernt. Stattdessen beinhalten wir die Reihenfolge der Saisonbegriffe in der Modellspezifikation zur ARIMA-Schätzsoftware. Es kann jedoch hilfreich sein, einen saisonalen Unterschied zu den Daten anzuwenden und die Autokorrelation und die partiellen Autokorrelationsdiagramme zu regenerieren. Dies kann bei der Modellidentifizierung der nicht-saisonalen Komponente des Modells helfen. In einigen Fällen kann die saisonale Differenzierung die meisten oder alle der Saisonalität Wirkung zu entfernen. Identifizieren Sie p und q Sobald die Stationarität und die Saisonalität adressiert worden sind, besteht der nächste Schritt darin, die Reihenfolge (d. h. (p) und (q)) der autoregressiven und gleitenden Durchschnittsterme zu identifizieren. Autokorrelation und partielle Autokorrelationsdiagramme Die primären Werkzeuge dafür sind das Autokorrelationsdiagramm und das partielle Autokorrelationsdiagramm. Die Stichproben-Autokorrelationsdiagramm und die Stichproben-Autokorrelationsdiagramm werden mit dem theoretischen Verhalten dieser Diagramme verglichen, wenn die Reihenfolge bekannt ist. Reihenfolge des Autoregressiven Prozesses ((p)) Speziell für ein AR (1) - Verfahren sollte die Autokorrelationsfunktion der Probe eine exponentiell abnehmende Erscheinung aufweisen. AR-Prozesse höherer Ordnung sind jedoch oft ein Gemisch aus exponentiell abnehmenden und gedämpften sinusförmigen Komponenten. Für autoregressive Prozesse höherer Ordnung muss die Stichprobenautokorrelation mit einem partiellen Autokorrelationsdiagramm ergänzt werden. Die partielle Autokorrelation eines AR ((p)) - Prozesses wird bei Verzögerung (p & sub1;) und grßer, so dass wir die partielle Autokorrelationsfunktion untersuchen, um festzustellen, ob es einen Beweis für eine Abweichung von Null gibt. Dies wird in der Regel durch das Platzieren eines 95-Konfidenzintervalls auf das partielle Autokorrelationsdiagramm der Probe bestimmt (die meisten Softwareprogramme, die Beispiel-Autokorrelationsdiagramme erzeugen, werden ebenfalls dieses Konfidenzintervall aufzeichnen). Wenn das Softwareprogramm nicht das Konfidenzband erzeugt, beträgt es ungefähr (pm 2 / sqrt), wobei (N) die Stichprobengröße ist. Ordnung des gleitenden Durchschnittsprozesses ((q)) Die Autokorrelationsfunktion eines MA ((q)) Prozesses wird bei der Verzögerung (q & sub1;) und größer größer, so daß wir die Autokorrelationsfunktion der Probe untersuchen, um zu sehen, wo sie im wesentlichen Null wird. Wir tun dies, indem wir das 95-Konfidenzintervall für die Stichproben-Autokorrelationsfunktion auf dem Stichproben-Autokorrelationsdiagramm platzieren. Die meisten Software, die das Autokorrelationsdiagramm erzeugen kann, kann auch dieses Vertrauensintervall erzeugen. Die partielle Autokorrelationsfunktion ist im Allgemeinen nicht hilfreich, um die Reihenfolge des gleitenden Durchschnittsprozesses zu bestimmen. Form der Autokorrelationsfunktion Die folgende Tabelle fasst zusammen, wie die Autokorrelationsfunktion für die Modellidentifikation verwendet wird. Zweck: Überprüfung der Zufallszahlen Autokorrelationsdiagramme (Box und Jenkins, S. 28-32) sind ein gängiges Werkzeug zur Überprüfung der Zufälligkeit in einem Datensatz. Diese Zufälligkeit wird durch Berechnen von Autokorrelationen für Datenwerte bei variierenden Zeitverzögerungen ermittelt. Wenn sie zufällig sind, sollten solche Autokorrelationen nahezu null für irgendwelche und alle zeitlichen Verzögerungen sein. Wenn nicht-zufällig, dann werden eine oder mehrere der Autokorrelationen signifikant ungleich Null sein. Darüber hinaus werden Autokorrelationsdiagramme in der Modellidentifikationsstufe für autoregressive, gleitende mittlere Zeitreihenmodelle von Box-Jenkins verwendet. Autokorrelation ist nur ein Maß der Zufälligkeit Beachten Sie, dass unkorreliert nicht unbedingt zufällig bedeutet. Daten mit signifikanter Autokorrelation sind nicht zufällig. Daten, die keine signifikante Autokorrelation aufweisen, können jedoch auf andere Weise noch nicht-zufällig auftreten. Autokorrelation ist nur ein Maß der Zufälligkeit. Im Rahmen der Modellvalidierung (die der primäre Typ der Zufälligkeit ist, die wir im Handbuch behandeln) ist die Überprüfung auf Autokorrelation typischerweise ein ausreichender Test der Zufälligkeit, da die Residuen von schlechten Anpassungsmodellen dazu tendieren, nicht-subtile Zufälligkeit zu zeigen. Einige Anwendungen erfordern jedoch eine strengere Bestimmung der Zufälligkeit. In diesen Fällen wird eine Batterie von Tests, die eine Überprüfung auf Autokorrelation einschließen kann, angewandt, da Daten in vielen verschiedenen und oft subtilen Arten nicht-zufällig sein können. Ein Beispiel dafür, wo eine strengere Überprüfung der Zufälligkeit erforderlich ist, wäre das Testen von Zufallszahlengeneratoren. Beispiel-Diagramm: Autokorrelationen sollten nahe-Null für die Zufälligkeit sein. Dies ist bei diesem Beispiel nicht der Fall, so dass die Zufallsannahme fehlschlägt. Dieses Beispiel-Autokorrelationsdiagramm zeigt, dass die Zeitreihe nicht zufällig ist, sondern vielmehr einen hohen Grad an Autokorrelation zwischen benachbarten und nahe benachbarten Beobachtungen aufweist. Definition: r (h) versus h Autokorrelationsdiagramme werden durch vertikale Achse gebildet: Autokorrelationskoeffizient, wobei C h die Autokovarianzfunktion ist und C 0 die Varianzfunktion ist. Beachten Sie, dass R h zwischen -1 und 1 liegt Folgende Formel für die Autokovarianz-Funktion Obwohl diese Definition weniger Vorspannung hat, hat die (1 / N) - Formulierung einige wünschenswerte statistische Eigenschaften und ist die am häufigsten in der Statistikliteratur verwendete Form. Siehe Seiten 20 und 49-50 in Chatfield für Details. Horizontale Achse: Zeitverzögerung h (h 1, 2, 3.) Die obige Zeile enthält auch mehrere horizontale Bezugslinien. Die Mittellinie ist auf Null. Die anderen vier Zeilen sind 95 und 99 Konfidenzbänder. Beachten Sie, dass es zwei verschiedene Formeln für die Erzeugung der Vertrauensbänder gibt. Wenn das Autokorrelationsdiagramm verwendet wird, um auf Zufälligkeit zu testen (dh keine Zeitabhängigkeit in den Daten), wird die folgende Formel empfohlen: wobei N die Stichprobengröße ist, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha ) Ist das Signifikanzniveau. In diesem Fall haben die Vertrauensbänder eine feste Breite, die von der Probengröße abhängt. Dies ist die Formel, die verwendet wurde, um die Vertrauensbänder im obigen Diagramm zu erzeugen. Autokorrelationsdiagramme werden auch in der Modellidentifikationsstufe für die Montage von ARIMA-Modellen verwendet. In diesem Fall wird für die Daten ein gleitendes Durchschnittsmodell angenommen und die folgenden Konfidenzbänder erzeugt: wobei k die Verzögerung, N die Stichprobengröße, z die kumulative Verteilungsfunktion der Standardnormalverteilung und (alpha) ist Das Signifikanzniveau. In diesem Fall nehmen die Vertrauensbänder zu, wenn die Verzögerung zunimmt. Das Autokorrelationsdiagramm kann Antworten auf die folgenden Fragen liefern: Sind die Daten zufällig Ist eine Beobachtung, die sich auf eine angrenzende Beobachtung bezieht, ist eine Beobachtung, die mit einer zweimal entfernten Beobachtung zusammenhängt (usw.) Ist die beobachtete Zeitreihe weißes Rauschen Ist die beobachtete Zeitreihe sinusförmig Ist die beobachtete Zeitreihe autoregressiv Was ist ein geeignetes Modell für die beobachtete Zeitreihe Ist das Modell gültig und ausreichend Ist die Formel ss / sqrt gültig Bedeutung: Sicherstellung der Gültigkeit der technischen Ergebnisse Randomness (zusammen mit festem Modell, fester Variation und fester Verteilung) Ist eine der vier Annahmen, die typischerweise allen Messprozessen zugrunde liegen. Die Zufälligkeitsannahme ist aus den folgenden drei Gründen von entscheidender Bedeutung: Die meisten statistischen Standardtests hängen von der Zufälligkeit ab. Die Gültigkeit der Testresultate steht in direktem Zusammenhang mit der Gültigkeit der Zufallsannahme. Viele häufig verwendete statistische Formeln hängen von der Zufallsannahme ab, wobei die häufigste Formel die Formel zur Bestimmung der Standardabweichung des Stichprobenmittels ist: wobei s die Standardabweichung der Daten ist. Obwohl stark verwendet, sind die Ergebnisse aus der Verwendung dieser Formel ohne Wert, es sei denn, die Zufälligkeitsannahme gilt. Für univariate Daten ist das Standardmodell Wenn die Daten nicht zufällig sind, ist dieses Modell falsch und ungültig, und die Schätzungen für die Parameter (wie die Konstante) werden unsinnig und ungültig. Kurz, wenn der Analytiker nicht auf Zufälligkeit prüft, dann wird die Gültigkeit vieler statistischer Schlüsse verdächtig. Das Autokorrelationsdiagramm ist eine hervorragende Möglichkeit zur Überprüfung für solche Zufälligkeit. Einfache Moving Averages machen Trends Stand Out Moving Averages (MA) sind eine der beliebtesten und häufig verwendeten technischen Indikatoren. Der gleitende Durchschnitt ist einfach zu berechnen und, sobald er in einem Diagramm dargestellt ist, ein leistungsstarkes visuelles Trend-Spotting-Tool. Sie werden oft über drei Arten von gleitenden Durchschnitt zu hören: einfach. Exponentiell und linear. Der beste Ort zum Start ist durch das Verständnis der grundlegendsten: die einfache gleitende Durchschnitt (SMA). Werfen wir einen Blick auf diese Indikator und wie sie helfen können Händler folgen Trends in Richtung größerer Gewinne. (Für mehr über gleitende Durchschnitte sehen Sie unseren Forex Walkthrough.) Trendlinien Es kann kein vollständiges Verständnis der bewegten Durchschnitte ohne ein Verständnis der Tendenzen geben. Ein Trend ist einfach ein Preis, der sich in einer bestimmten Richtung fortsetzt. Es gibt nur drei echte Trends, denen eine Sicherheit folgen kann: Ein Aufwärtstrend. Oder bullish Trend, bedeutet, dass der Preis höher ist. Ein Abwärtstrend. Oder bärische Tendenz, bedeutet, dass der Preis niedriger ist. Seitwärts gerichtet. Wo sich der Preis seitwärts bewegt. Die wichtige Sache, über Trends zu erinnern ist, dass die Preise nur selten in einer geraden Linie bewegen. Daher werden gleitende Durchschnittslinien verwendet, um einem Händler zu helfen, die Richtung des Trends leichter zu identifizieren. (Für weiterführende Literatur zu diesem Thema, siehe Die Grundlagen der Bollinger-Bands und Moving Average Umschläge: Raffinieren ein beliebtes Trading-Tool.) Moving Average Construction Die Lehrbuch-Definition eines gleitenden Durchschnitt ist ein durchschnittlicher Preis für eine Sicherheit mit einem bestimmten Zeitraum. Nehmen wir den sehr populären 50-Tage gleitenden Durchschnitt als Beispiel. Ein gleitender 50-Tage-Durchschnitt wird berechnet, indem die Schlusskurse für die letzten 50 Tage der Sicherheit gezählt und addiert werden. Das Ergebnis aus der Additionskalkulation wird dann durch die Anzahl der Perioden geteilt, in diesem Fall 50. Um weiterhin den gleitenden Durchschnitt auf einer täglichen Basis zu berechnen, ersetzen Sie die älteste Zahl mit dem letzten Schlusskurs und machen die gleiche Mathematik. Unabhängig davon, wie lange oder kurz eines gleitenden Durchschnitts sind Sie auf der Hand, sind die grundlegenden Berechnungen gleich geblieben. Die Änderung erfolgt in der Anzahl der Schlusskurse, die Sie verwenden. So ist z. B. ein 200-Tage-Gleitender Durchschnitt der Schlusskurs für 200 Tage, zusammengefasst und dann durch 200 geteilt. Sie sehen alle Arten von gleitenden Durchschnitten, von zweitägigen gleitenden Durchschnitten bis zu 250-Tage-gleitenden Durchschnittswerten. Es ist wichtig, sich daran zu erinnern, dass Sie eine bestimmte Anzahl von Schlusskursen haben müssen, um den gleitenden Durchschnitt zu berechnen. Wenn eine Sicherheit nagelneu oder nur einen Monat alt ist, können Sie einen gleitenden Durchschnitt von 50 Tagen nicht durchführen, da Sie nicht über eine ausreichende Anzahl von Datenpunkten verfügen. Auch ist es wichtig zu beachten, dass weve gewählt, um die Schlusskurse in den Berechnungen verwenden, aber gleitende Durchschnittswerte können mit monatlichen Preisen, Wochenpreise, Eröffnungskurse oder sogar Intraday-Preise berechnet werden. Abbildung 1: Ein einfacher gleitender Durchschnitt in Google Inc. Abbildung 1 ist ein Beispiel für einen einfachen gleitenden Durchschnitt auf einem Aktienchart von Google Inc. (Nasdaq: GOOG). Die blaue Linie repräsentiert einen gleitenden 50-Tage-Durchschnitt. Im obigen Beispiel sehen Sie, dass sich der Trend seit Ende 2007 verringert hat. Der Preis für Google-Aktien fiel im Januar 2008 unter den 50-Tage-Gleitenden Durchschnitt und ging weiter nach unten. Wenn der Kurs unter einem gleitenden Durchschnitt liegt, kann er als einfaches Handelssignal verwendet werden. Ein Umzug unter dem gleitenden Durchschnitt (wie oben gezeigt) deutet darauf hin, dass die Bären die Preisaktion kontrollieren und dass sich der Vermögenswert voraussichtlich weiter senken wird. Umgekehrt, ein Kreuz über einem gleitenden Durchschnitt deutet darauf hin, dass die Bullen in der Kontrolle sind und dass der Preis kann immer bereit, einen Schritt höher zu machen. (Lesen Sie mehr in Track-Aktienkurse mit Trendlinien.) Andere Wege zu bewegen Gleitende Durchschnitte Gleitende Durchschnitte werden von vielen Händlern verwendet, um nicht nur einen aktuellen Trend, sondern auch als Ein-und Ausfahrt-Strategie zu identifizieren. Eine der einfachsten Strategien beruht auf der Kreuzung von zwei oder mehr bewegten Durchschnitten. Das Grundsignal wird gegeben, wenn der kurzfristige Mittelwert über oder unter dem längerfristigen gleitenden Durchschnitt liegt. Zwei oder mehr gleitende Durchschnittswerte erlauben Ihnen, einen längerfristigen Trend zu sehen, verglichen mit einem kürzeren bewegten Durchschnitt, das es auch eine einfache Methode ist, zu bestimmen, ob der Trend an Stärke gewinnt, oder wenn er im Begriff ist, umzukehren. Abbildung 2: Ein langfristiger und kürzerer bewegter Durchschnitt in Google Inc. Abbildung 2 verwendet zwei gleitende Mittelwerte, eine langfristige (50-tägige, die von der MACD gezeigt wird Blaue Linie) und der andere kürzere Term (15-Tage, dargestellt durch die rote Linie). Dies ist das gleiche Google-Diagramm in Abbildung 1 gezeigt, aber mit dem Zusatz der beiden gleitenden Mittelwerte, um den Unterschied zwischen den beiden Längen zu veranschaulichen. Sie bemerken, dass die 50-Tage gleitenden Durchschnitt ist langsamer, um Preisänderungen anzupassen. Weil es mehr Datenpunkte in seiner Berechnung verwendet. Auf der anderen Seite reagiert der 15-tägige gleitende Durchschnitt schnell auf Preisveränderungen, da jeder Wert aufgrund des relativ kurzen Zeithorizonts eine größere Gewichtung bei der Berechnung aufweist. In diesem Fall würden Sie, indem Sie eine Cross-Strategie verwenden, für den 15-Tage-Durchschnitt sehen, um den 50-Tage-Gleitenden Durchschnitt als Einstieg für eine Short-Position zu überqueren. Abbildung 3: Ein Dreimonatiges Das Obenstehende ist ein Drei-Monats-Diagramm von United States Oil (AMEX: USO) mit zwei einfachen gleitenden Durchschnitten. Die rote Linie ist der kürzere, 15 Tage gleitende Durchschnitt, während die blaue Linie den längeren, 50-tägigen gleitenden Durchschnitt darstellt. Die meisten Händler werden das Kreuz des kurzfristigen gleitenden Durchschnitts über dem längerfristigen gleitenden Durchschnitt verwenden, um eine Long-Position einzuleiten und den Beginn eines zinsbullischen Trends zu identifizieren. (Erfahren Sie mehr über die Anwendung dieser Strategie im Handel The MACD Divergence.) Unterstützung wird festgestellt, wenn ein Preis nach unten tendiert. Es gibt einen Punkt, an dem der Verkauf Druck nachlässt und Käufer sind bereit, in Schritt. Mit anderen Worten, eine Etage etabliert ist. Widerstand tritt auf, wenn ein Preis aufwärts tendiert. Es kommt ein Punkt, wenn die Kaufkraft abnimmt und die Verkäufer treten. Das würde eine Obergrenze schaffen. (Weitere Erläuterungen hierzu finden Sie unter Support amp Resistance Basics.) In beiden Fällen kann ein gleitender Durchschnitt in der Lage sein, einen frühen Unterstützungs - oder Widerstandswert zu signalisieren. Wenn zum Beispiel eine Sicherheit in einem etablierten Aufwärtstrend sinkt, dann wäre es nicht überraschend, wenn die Aktie bei einem langfristigen, 200-tägigen gleitenden Durchschnitt gefunden wird. Auf der anderen Seite, wenn der Preis niedriger ist, werden viele Händler für die Aktie beobachten, um den Widerstand von großen gleitenden Durchschnitten (50-Tage, 100-Tage, 200-Tage-SMAs) abzustoßen. (Für mehr über die Unterstützung und Widerstand, um Trends zu identifizieren, lesen Sie Trend-Spotting mit der Akkumulation / Distribution Line.) Fazit Moving Averages sind leistungsfähige Werkzeuge. Ein einfacher gleitender Durchschnitt ist einfach zu berechnen, was es erlaubt, ziemlich schnell und einfach eingesetzt zu werden. Eine bewegte Durchschnitte größte Stärke ist seine Fähigkeit, einem Händler zu helfen, einen gegenwärtigen Trend zu identifizieren oder eine mögliche Trendumkehr zu lokalisieren. Bewegungsdurchschnitte können auch ein Maß an Unterstützung oder Widerstand für die Sicherheit identifizieren oder als ein einfaches Eingangs - oder Ausgangssignal wirken. Wie Sie sich entscheiden, gleitende Durchschnitte zu verwenden, liegt ganz bei Ihnen.
No comments:
Post a Comment